skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Brandenburg, Marie-Charlotte"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We study the structure of the set of all possible affine hyperplane sections of a convex polytope. We present two different cell decompositions of this set, induced by hyperplane arrangements. Using our decomposition, we bound the number of possible combinatorial types of sections and craft algorithms that compute optimal sections of the polytope according to various combinatorial and metric criteria, including sections that maximize the number of -dimensional faces, maximize the volume, and maximize the integral of a polynomial. Our optimization algorithms run in polynomial time in fixed dimension, but the same problems show computational complexity hardness otherwise. Our tools can be extended to intersection with halfspaces and projections onto hyperplanes. Finally, we present several experiments illustrating our theorems and algorithms on famous polytopes. 
    more » « less
  2. Abstract We show that a competitive equilibrium always exists in combinatorial auctions with anonymous graphical valuations and pricing, using discrete geometry. This is an intuitive and easy-to-construct class of valuations that can model both complementarity and substitutes, and to our knowledge, it is the first class besides gross substitutes that have guaranteed competitive equilibrium. We prove through counter-examples that our result is tight, and we give explicit algorithms for constructing competitive pricing vectors. We also give extensions to multi-unit combinatorial auctions (also known as product-mix auctions). Combined with theorems on graphical valuations and pricing equilibrium of Candogan, Ozdagar and Parrilo, our results indicate that quadratic pricing is a highly practical method to run combinatorial auctions. 
    more » « less